A noninteracting low-mass black hole—giant star binary system

Todd A. Thompson, Christopher S. Kochanek, Krzysztof Z. Stanek, Carles Badenes et al. 2019, Science, 366, 637-640

How to find a stellar mass BH?

- Interacting
 - X-rays: HMXBs, LMXBs, Accretion of ISM
 - Mergers LIGO

- Non-interacting :
 - Microlensing
 - Spectroscopy of binaries
 - Light curve modulations followed by spectroscopy

Light curve modulation + RV

- Ellipsoidal modulation
 - P, q = (M2/M1), R, i
- Star spots
 - 0

 $K = v_{max} \sin(i)$ P : orbital period

e: eccentricity

Candidate selection

Binary system parameters

RV:

P = 83.2 + -0.06 days, K = 44.6 + -0.1 km/s, e = 0.0048 + -0.0026

$$f(M) \equiv \frac{M_{\rm CO}^3 \sin^3 i_{\rm orb}}{\left(M_{\rm giant} + M_{\rm CO}\right)^2} = \frac{K^3 P_{\rm orb}}{2\pi G} (1 - e^2)^{3/2} \simeq 0.766 \pm 0.006 \, M_{\odot}$$

Binary Parameters

- $f(M) \sim 0.76$
- M_{giant} > 1 M_{\odot} suggests M_{CO} > 1.8 M_{\odot}

SED modeling rules out a stellar companion

Giant mass, inclination

Lightcurve?

Spotted K-type giant star

Giant mass, inclination

- Assume the system is tidally locked : P_{rot} = P_{orb} = P, i_{rot} = i_{orb} = i
- $v_{rot} = (2 \pi/P) * R* sin(i)$
- Measure v_{rot} sin(i_{rot}) from high res. spectrum (= 14.1 km/s)

- R ~ 14.1 * P/sin(i)
- $g \sim GM_{giant}/R^2$
- Measured log(g) = 2.35 +/- 0.14

$$R \simeq 23 \pm 1 R_{\odot}/\sin i$$
 $M_{
m giant}^{\log g} = 4.4_{-1.5}^{+2.2} \, M_{\odot}/{
m sin}^2 \, i_{\odot}$

Giant Mass, inclination

Observed flux + GAIA distance

Corrected GAIA parallax ~ 0.372 mas, D ~ 3.11 kpc

$$L \simeq 331^{+231}_{-127} L_{\odot}$$
 and $R \simeq 30^{+9}_{-6} R_{\odot}$

Comparing the two radii gives

$$\sin i \simeq 0.8 \pm 0.2$$
 $M_{\rm giant}^{\log g} \gtrsim 3.2_{-0.9}^{+1.2} M_{\odot}$ $M_{\rm CO} \gtrsim 2.5 M_{\odot}$

A better estimate of M_{giant} will constrain i and M_{CO}

Comparison to Stellar Evolutionary Tracks

- log(g) and Teff of the giant determined from spectra
- L (determined from flux, distance) and R given by parallax method
- Use solar metallicity models to determine best-fit mass of giant

L from parallax

Teff from spectra

Comparison to Stellar Evolutionary Tracks

L from

parallax

Teff from

spectra

$$T_{\rm eff} = 4525 \pm 90 \, {\rm K}$$

$$\log g = 2.35 \pm 0.14$$

$$L \simeq 331^{+231}_{-127} L_{\odot}$$

- Low Teff favors ~1
 Msun giant
- Bolometric luminosity favors 2-3 Msun giant

Compact Object Mass Constraints

Given APOGEE v*sin(i)
measurement along with v from
Mgiant, R, and log(g) gives sin(i)

$$egin{aligned} M_{
m giant} &\simeq 3.2^{+1.0}_{-1.0}\,{
m M}_\odot \quad \sin i \simeq 0.97^{+0.03}_{-0.12} \stackrel{\circ}{\lesssim}_{3}^{\circ} {}_{4} \ \\ f(M) &\equiv rac{M_{
m CO}^{3} {\sin}^{3} i_{
m orb}}{\left(M_{
m giant} + M_{
m CO}
ight)^{2}} &\simeq 0.766 \pm 0.006\,{
m M}_\odot {}_{2} \end{aligned}$$

Compact Object Mass Constraints

- Variation in log(g) and sin(i) gives
 MCO ~ 2.9-4.0 Msun
- Empirical relation b/w [C/N] and Mgiant implies low mass giant (Mgiant~1 Msun), but unlikely:
 - Inconsistent with previous mass derivation
 - Anomalies in APOGEE sample

X-ray limits: evidence for non-interaction

- Swift XRT limits from 0.3-10 keV:
 - \circ Fx = 4.4x10^(-14) erg cm^(-2) s^(-1)
 - 10[^](-2) Lsun at 3.1 kpc
 - o 10^(-7) Ledd for 3Msun BH
- For efficient wind-powered accretion, 0.35 Lsun needed
- X-ray limits imply radiatively inefficient accretion
- Gas may be expelled from system without accreting

$$\dot{M}_{\rm acc} \sim \frac{\dot{M}_{\rm wind}}{(4\pi s^2)} \pi \left(\frac{GM_{\rm CO}}{V_{\rm wind}^2}\right)^2 \sim 2 \times 10^{-13} \,\rm M_{\odot} \,\, yr^{-1} \,\, \frac{\dot{M}_{\rm wind, -10} \, M_{\rm CO, 3}^2 \, sin^2 \, i}{V_{\rm wind, 200}^4}$$

The argument: J05215658 is actually a triple system: 1 M_solar giant with two 0.9 M_solar stars

Is there validity to this argument?

The argument: J05215658 is actually a triple system: 1 M_solar giant with two 0.9 M_solar stars

Is there validity to this argument?

-[C/N] ratio implies a lower mass

The argument: J05215658 is actually a triple system: 1 M_solar giant with two 0.9

M_solar stars

Is there validity to this argument?

-[C/N] ratio implies a lower mass

The argument: J05215658 is actually a triple system: 1 M_solar giant with two 0.9

M_solar stars

Is there validity to this argument?

- -[C/N] ratio implies a lower mass
- -Relation between mass and [C/N] ratio

The argument: J05215658 is actually a triple system: 1 M_solar giant with two 0.9 M_solar stars

Is there validity to this argument?

- -[C/N] ratio implies a lower mass
- -Relation between mass and [C/N] ratio
- -low x-ray luminosity implies low accretion

Rate

The argument: J05215658 is actually a triple system: 1 M_solar giant with two 0.9 M_solar stars Is there validity to this argument?

- -[C/N] ratio implies a lower mass
- -Relation between mass and [C/N] ratio
- -low x-ray luminosity implies low accretion

Rate

-Spectroscopic atmospheric model-derived masses can be very large

Counter arguments

-[C/N] ratio implies a lower mass

-> counter argument: strong independent

Constraints on mass from SED

Counter arguments

- -[C/N] ratio implies a lower mass
- -> counter argument: strong independent

Constraints on mass from SED

-> counter argument: 6% of > 3 M_solar stars

Have high [C/N]

-> systematics in APOGEE [C/N] measurements

Counter arguments

-low x-ray luminosity implies low accretion

Rate

-> counter argument: Mass accretion rate from stellar wind is in the radiatively inefficient regime given the ~3 M_solar mass of the black hole

Counter arguments

-low x-ray luminosity implies low accretion

Rate

- -> counter argument: Mass accretion rate from stellar wind is in the radiatively inefficient regime given the ~3 M_solar mass of the black hole
- -> counter argument: black holes have intrinsically lower x-ray luminosities in x-ray binaries

Counter arguments

- -Spectroscopic atmospheric model-derived masses can be very large
- -> counter argument: independent mass estimates using L, T_eff and log g to evolutionary models

Counter arguments

- -System is a triple, secondary and tertiary are 0.9 M_solar each
- -> a triple system would require semi-major axis of secondary and tertiary to be much smaller
- -> lack of ellipsoidal variations detected in lightcurve
- -> inconsistent with distance measurement from parallax measurement from Gaia

Backup Slides

Parallax measurement

Measured: $\pi = 0.322 \, \text{mas} \pm 0.049 \, \text{mas} \, (\text{random}) \pm 0.043 \, \text{mas} \, (\text{systematic})$

Binary motion can induce biases as large as ~ s/1AU ~ 0.11/sin(i) mas Perform a simulation to quantify these biases

Parallax measurement

Corrected

$$\pi \simeq 0.322^{+0.086}_{-0.074}$$

Very high biases ruled out by RUWE

